跳转到主要内容
AgentCPM-Report 是一款由 THUNLP、中国人民大学 RUCBMModelBest 联合研发的开源大语言模型智能体。 该模型基于 MiniCPM4.1(80亿参数)基座构建,能够接受用户指令,自主进行深度调研并生成长篇报告。 核心亮点:
  • 卓越的洞察力与全面性:作为一款 8B 参数量的端侧模型,AgentCPM-Report 在深度调研报告生成任务上展现了惊人的潜力,其表现已赶超部分闭源商用智能体系统。它重新定义了小规模智能体的性能天花板,尤其在洞察力 (Insight) 指标上取得了 SOTA 结果。
  • 轻量化与本地化部署:模型支持在个人计算机上进行敏捷部署。通过结合 UltraRAG 等框架,用户可以构建规模化的本地知识库,生成比通用大模型更专业、更深入的报告。这种轻量级与本地化的特性,为处理隐私数据或私域数据的深度报告写作提供了安全可靠的基础。
本文档旨在介绍如何在 UltraRAG 框架中配置和使用 AgentCPM-Report。
为了获得最佳生成效果,我们强烈推荐下载并使用配套的专有模型 AgentCPM-Report

1. Pipeline 结构概览

AgentCPM-Report Pipeline 采用基于状态机(State Machine)的动态循环架构,系统在初始化后进入核心循环,由智能路由(Router)根据当前任务进展自主决策下一步行动——在信息搜集(Search)、初始规划(Analyst-Init)、内容撰写(Write)和计划扩展(Analyst-Extend)四个分支间灵活切换,通过不断的“检索-规划-写作”迭代,直至完成所有调研任务并输出最终的格式化报告。
https://mintcdn.com/ultrarag/T7GffHzZitf6TThi/images/yaml.svg?fit=max&auto=format&n=T7GffHzZitf6TThi&q=85&s=69b41e79144bc908039c2ee3abbb1c3bexamples/AgentCPM-Report.yaml
# AgentCPM-Report Demo for UltraRAG UI

# MCP Server
servers:
  benchmark: servers/benchmark
  generation: servers/generation
  retriever: servers/retriever
  prompt: servers/prompt
  router: servers/router
  custom: servers/custom

# MCP Client Pipeline
pipeline:
- benchmark.get_data:
    output:
      q_ls: instruction_ls
- retriever.retriever_init
- generation.generation_init
- custom.surveycpm_init_citation_registry
- custom.surveycpm_state_init
- loop:
    times: 140
    steps:
    - branch:
        router:
        - router.surveycpm_state_router
        branches:
          search:
          - prompt.surveycpm_search:
              output:
                prompt_ls: search_prompt_ls          
          - generation.generate:
              input:
                prompt_ls: search_prompt_ls
              output:
                ans_ls: search_response_ls
          - custom.surveycpm_parse_search_response:
              input:
                response_ls: search_response_ls       
          - retriever.retriever_batch_search:
              input:
                batch_query_list: keywords_ls
          - custom.surveycpm_process_passages_with_citation
          - custom.surveycpm_update_state
          analyst-init_plan:
          - prompt.surveycpm_init_plan:
              output:
                prompt_ls: init_plan_prompt_ls
          - generation.generate:
              input:
                prompt_ls: init_plan_prompt_ls
              output:
                ans_ls: init_plan_response_ls
          - custom.surveycpm_after_init_plan:
              input:
                response_ls: init_plan_response_ls
          - custom.surveycpm_update_state
          write:
          - prompt.surveycpm_write:
              output:
                prompt_ls: write_prompt_ls
          - generation.generate:
              input:
                prompt_ls: write_prompt_ls
              output:
                ans_ls: write_response_ls
          - custom.surveycpm_after_write:
              input:
                response_ls: write_response_ls
          - custom.surveycpm_update_state
          analyst-extend_plan:
          - prompt.surveycpm_extend_plan:
              output:
                prompt_ls: extend_prompt_ls         
          - generation.generate:
              input:
                prompt_ls: extend_prompt_ls
              output:
                ans_ls: extend_response_ls
          - custom.surveycpm_after_extend:
              input:
                response_ls: extend_response_ls
          - custom.surveycpm_update_state
          done: []
- custom.surveycpm_format_output:
    output:
      ans_ls: final_survey_ls

2. 编译Pipeline文件

执行以下命令编译该工作流:
ultrarag build examples/AgentCPM-Report.yaml

3. 配置运行参数

修改 examples/parameter/AgentCPM-Report_parameter.yaml
想要调整调研深度? 请在 custom 配置中按需调整:增加 surveycpm_max_step 以延长研究时间,提高 surveycpm_max_extend_step 以获得更详实的扩写内容。若对质量有极高要求,请务必开启 surveycpm_hard_mode(硬核模式)。
https://mintcdn.com/ultrarag/T7GffHzZitf6TThi/images/yaml.svg?fit=max&auto=format&n=T7GffHzZitf6TThi&q=85&s=69b41e79144bc908039c2ee3abbb1c3bexamples/parameter/AgentCPM-Report_parameter.yaml
benchmark:
  benchmark:
    key_map:
      gt_ls: golden_answers
      q_ls: question
    limit: -1
    name: nq
    path: data/sample_nq_10.jsonl
    seed: 42
    shuffle: false
custom:
  surveycpm_hard_mode: false
  surveycpm_hard_mode: true
  surveycpm_max_extend_step: 12
  surveycpm_max_step: 140
generation:
  backend: vllm
  backend: openai
  backend_configs:
    hf:
      batch_size: 8
      gpu_ids: 2,3
      model_name_or_path: openbmb/AgentCPM-Report
      trust_remote_code: true
    openai:
      api_key: abc
      base_delay: 1.0
      base_url: http://localhost:8000/v1
      base_url: http://localhost:65506/v1
      concurrency: 8
      model_name: MiniCPM4-8B
      model_name: AgentCPM-Report
      retries: 3
    vllm:
      dtype: auto
      gpu_ids: 2,3
      gpu_memory_utilization: 0.9
      model_name_or_path: openbmb/AgentCPM-Report
      trust_remote_code: true
  extra_params:
    chat_template_kwargs:
      enable_thinking: false
  sampling_params:
    max_tokens: 2048
    temperature: 0.7
    top_p: 0.8
  system_prompt: ''
  system_prompt: '你是一个专业的UltraRAG问答助手。请一定记住使用中文回答问题。'
prompt:
  surveycpm_extend_plan_template: prompt/surveycpm_extend_plan.jinja
  surveycpm_init_plan_template: prompt/surveycpm_init_plan.jinja
  surveycpm_search_template: prompt/surveycpm_search.jinja
  surveycpm_write_template: prompt/surveycpm_write.jinja
retriever: 
  backend: sentence_transformers
  backend: openai
  backend_configs:
    bm25:
      lang: en
      save_path: index/bm25
    infinity:
      bettertransformer: false
      model_warmup: false
      pooling_method: auto
      trust_remote_code: true
    openai:
      api_key: abc
      base_url: https://api.openai.com/v1
      base_url: http://localhost:65504/v1
      model_name: text-embedding-3-small
      model_name: qwen-embedding
    sentence_transformers:
      sentence_transformers_encode:
        encode_chunk_size: 256
        normalize_embeddings: false
        psg_prompt_name: document
        psg_task: null
        q_prompt_name: query
        q_task: null
      trust_remote_code: true
  batch_size: 16
  collection_name: wiki
  corpus_path: data/corpus_example.jsonl
  gpu_ids: '1'
  index_backend: faiss
  index_backend_configs:
    faiss:
      index_chunk_size: 10000
      index_path: index/index.index
      index_use_gpu: true
    milvus:
      id_field_name: id
      id_max_length: 64
      index_chunk_size: 1000
      index_params:
        index_type: AUTOINDEX
        metric_type: IP
      metric_type: IP
      search_params:
        metric_type: IP
        params: {}
      text_field_name: contents
      text_max_length: 60000
      token: null
      uri: index/milvus_demo.db
      vector_field_name: vector
  is_demo: false
  is_multimodal: false
  model_name_or_path: openbmb/MiniCPM-Embedding-Light
  query_instruction: ''
  query_instruction: 'Query: '
  top_k: 5
  top_k: 20

4. 效果演示

配置完成后,在 UltraRAG UI 中启动 AgentCPM-Report Pipeline。
由于万字综述的生成涉及大量并发检索与多轮推理,耗时通常在 10 分钟以上。您可以利用 UI 的后台运行功能,任务完成后再回来查看最终报告。