作用
Reranker Server 是 UR-2.0 中用于 对检索结果进行精排的模块。 它接收来自 Retriever Server 的初步检索结果,并基于语义相关性对候选文档进行重新排序, 从而提升检索阶段的精度与最终生成结果的质量。 该模块原生支持多种主流后端包括 Sentence-Transformers、 Infinity 以及 OpenAI。使用示例
Copy
# MCP Server
servers:
benchmark: servers/benchmark
retriever: servers/retriever
reranker: servers/reranker
# MCP Client Pipeline
pipeline:
- benchmark.get_data
- retriever.retriever_init
- retriever.retriever_embed
- retriever.retriever_index
- retriever.retriever_search
- reranker.reranker_init
- reranker.reranker_rerank
Copy
ultrarag build examples/corpus_rerank.yaml
Copy
benchmark:
benchmark:
key_map:
gt_ls: golden_answers
q_ls: question
limit: -1
name: nq
path: data/sample_nq_10.jsonl
seed: 42
shuffle: false
reranker:
backend: sentence_transformers
backend_configs:
infinity:
bettertransformer: false
device: cuda
model_warmup: false
pooling_method: auto
trust_remote_code: true
openai:
api_key: ''
base_url: https://api.openai.com/v1
model_name: text-embedding-3-small
sentence_transformers:
device: cuda
trust_remote_code: true
batch_size: 16
gpu_ids: 0
model_name_or_path: openbmb/MiniCPM-Reranker-Light
model_name_or_path: BAAI/bge-reranker-large
query_instruction: ''
top_k: 5
retriever:
backend: sentence_transformers
backend_configs:
bm25:
lang: en
infinity:
bettertransformer: false
device: cuda
model_warmup: false
pooling_method: auto
trust_remote_code: true
openai:
api_key: ''
base_url: https://api.openai.com/v1
model_name: text-embedding-3-small
sentence_transformers:
device: cuda
sentence_transformers_encode:
encode_chunk_size: 10000
normalize_embeddings: false
psg_prompt_name: document
psg_task: null
q_prompt_name: query
q_task: null
trust_remote_code: true
batch_size: 16
corpus_path: data/corpus_example.jsonl
embedding_path: embedding/embedding.npy
faiss_use_gpu: true
gpu_ids: 0,1
gpu_ids: 1
index_chunk_size: 50000
index_path: index/index.index
is_multimodal: false
model_name_or_path: openbmb/MiniCPM-Embedding-Light
model_name_or_path: Qwen/Qwen3-Embedding-0.6B
overwrite: false
query_instruction: ''
top_k: 5
Copy
ultrarag run examples/corpus_rerank.yaml